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The presence of cracks in solid structures can be detected by measuring changes in the
natural frequencies of appropriate vibration modes. In the present work a simple
energy-based model of a vibrating ring is presented to estimate the effect of a crack on the
frequencies of repeated mode pairs. Introduction of a crack breaks the symmetry of the
structure, causing the frequencies of the degenerate modes to split to a measurable extent.
A simple expression is derived that relates the split in frequency to the frequency of the
modes in the un-cracked ring, the dimensions of the ring and the crack length. The
treatment is extended to the case of a ring that is not perfectly symmetrical prior to the
introduction of a crack. In the latter case, when the crack is small, the mode pairs have
a preferred orientation determined by the initial asymmetry. As the crack grows the mode
pairs rotate to become aligned with the axis defining the location of the crack.
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1. INTRODUCTION

The presence of defects in solid structures can be detected by measuring the variations in
the natural frequencies of vibration modes (e.g., [1–3]). However, application of this
method in practice is problematical because modal frequencies are sensitive to other types
of defect such as variations in dimension, porosity, etc. In order to detect growing cracks
it is desirable to be able to measure relative changes in frequency such as those that occur
in the degenerate modes in symmetrical bodies [4].

In axi-symmetrical bodies, the radial-axial modes occur in pairs with identical
frequencies [5] [the so-called sin (nu) and cos (nu) modes, e.g. Figure 1(a)]. However, if a
crack nucleates and grows in an appropriate orientation, the axial symmetry is broken and
the modal frequencies split by a small amount Dv, depending on the size of the crack.
Srivasan and Kot [6] investigated the effect of a slot in the wall of a cylinder on the
frequencies of radial-axial modes. They found that the slot had little influence on modal
frequencies, although the mode shapes were found to be distorted. Srivasan and Kot
investigated circumferential slots (plane of the cut normal to the axis). Such cracks are not
in an orientation that will break axial symmetry. Wake et al. [7] investigated the effect of
longitudinal slots (plane of the cut parallel to the axis) in tubes and found significant splits
in the frequencies of many of the radial-axial modes.

The object of this paper is to present a simplified analytical model of frequency splits
in the degenerate radial-axial vibration modes and is relevant to a tube containing a
longitudinal crack. To avoid the complications of three-dimensional treatment, the
vibration of a ring is modelled so that the deformation is confined to a plane. Previous
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work on the vibration of imperfect rings [8, 9] has shown that deviations from perfect
axi-symmetry, modelled using added point masses and radial and torsional springs
produces frequency splitting of the repeated modes. In the present work, a simple
expression is derived relating the split in frequency to the frequency of the un-cracked ring,
the ring dimensions and the crack length. The treatment is also extended to the case of
a ring that is not perfectly symmetrical prior to the introduction of a crack. In this case,
when the crack is small, the mode pairs initially have a preferred orientation determined
by the initial asymmetry. As the crack grows the mode pairs rotate to an orientation
determined by the location of the crack.

2. EFFECT OF A CRACK ON THE NATURAL FREQUENCIES OF REPEATED
MODES

Consider the vibration of a ring of radius R, width h, density r and Young’s modulus
E [Figure 1(b)]. Apart from a modification to the elastic constants used, this is formally
the same problem as that involving the Rayleigh vibration modes in an infinitely long tube.

The problem is simplified if we assume that h�R and that strains are infinitesimal, so
that the results of Love [10] can be used. In addition, only bending deformation is
considered, where bending is characterised by the local deviation in curvature k from the
mean curvature 1/R. For zero strain at the mid section of the ring, the relation between
the components of the displacement ur and uu , defined with respect to the cylindrical
co-ordinates r, u, is

1uu

1u
+ ur =0. (1)

Since the displacements are sinusoidal functions of u, it follows that

$ur

uu%=$ cos (nu)
−sin (nu)/n

sin (nu)
cos (nu)/n%$q1

q2% , (2)

Figure 1. (a) Illustration of displacement produced by the cos (nu) and sin (nu) modes for n=2. (b) Model
representing cracked ring.
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where n is an integer (nq 1) and q1 and q2 are generalised co-ordinates which are periodic
functions of time. The local deviation of curvature from the mean value 1/R is given by

k=
1
R2

1

1u $uu +
1ur

1u%=
n2 −1

R2 [q1 cos (nu)+ q2 sin (nu)]. (3)

For displacements given by (2), the elastic strain energy V0 and kinetic energy T can be
written in the form:

V0 = 1
2mv2

0 [q2
1 + q2

2 ], (4)

and

T= 1
2m[q̇2

1 + q̇2
2 ]. (5)

Here, the superior dots denote differentiation with respect to time t and m is the modal
mass [11] defined by

m=
n2 +1

n2 prRh. (6)

The natural frequency v0 of the nth mode is given by

v2
0 =

1
12

n2(n2 −1)2

(n2 +1)
E
r

h2

R4 . (7)

The introduction of a thin crack affects the vibration of the ring mainly through its effect
on the elastic strain energy. Under conditions of fixed boundary displacements the strain
energy of the ring falls by an amount DV so that the potential energy can be written

V=V0 −DV.

Morassi [12] used a perturbation method to show that the sensitivity of the frequencies
of a cracked beam is proportional to the modal strain energy density at the corresponding
section of an un-cracked beam. In the present work, a fracture mechanics approach is used
to obtain an estimate for DV in terms of crack length.

The connection between energy changes and fracture mechanics parameters is well
established, (e.g. Paris and Sih [13]). The original hypothesis of Griffith [14] was that energy
released by a reduction in elastic strain energy under fixed displacement conditions would
be available to create new surfaces and to drive fracture. This is encapsulated in the
definition of the free energy release rate G. For a crack of length a in a plate of unit
thickness with constant displacements applied at the boundary, G is defined by

G=−
1V
1a

. (8)

It is assumed that spontaneous crack extension occurs only when G reaches a critical value.
For the present application G is assumed to be below the critical value. Thus, if G is known
as a function of crack length, the reduction in energy produced by the introduction of a
crack can be obtained from (8) by integration:

DV=g
a

0

G da'. (9)
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In addition, G is also directly related to the stress intensity factor K that characterises the
stress field of the crack at points close to the tip, i.e.,

G=(1− n2)K2/E. (10)

Expressions for K have been tabulated in the literature for a range of loading and
geometrical cases so that DV can be estimated using equations (9) and (10).

For a beam of unit thickness subject to bending with a curvature k, an expression for
K (e.g., Ewalds and Wanhill [15]) gives

DV= 1
9Eh4P(a/h)k2, (11)

where the dimensionless function P(a/h) is given by

P(a/h)=g
a/h

0

f(x)2 dx, (12)

and

f(x)=
3
2

zx
[1·99− x(1− x)(2·15−3·93x+2·7x2)]

(1+2x)(1− x)3/2 . (13)

For small crack lengths (a/h�1), equations (12) and (13) give the following approximation

P(a/h)1 4·5(a/h)2. (14)

The strain energy of the cracked ring vibrating with a displacement given by equation (2)
can now be written as

V=
1
2

mv2
0 (q2

1 + q2
2 )−

1
9

Eh4P(a, h)$n2 −1
R2 %

2

(q1 cos (n8)+ q2 sin (n8))2, (15)

where 8 is defines the angular location of the crack (Figure 1).
The equation of motion of the cracked ring can now be obtained from Lagrange’s

equations:

d
dt 01T

1q̇11−
1T
1q1

+
1V
1q1

=0,

d
dt 01T

1q̇21−
1T
1q2

+
1V
1q2

=0. (16)

Using (5), (6) and (15) in (16) gives:

q̈1 v2
0 −

d

2
(1+cos (2n8)) −

d

2
sin(2n8) q1

G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k
G
G

G

L

lq̈2

+
−

d

2
sin (2n8) v2

0 −
d
2

(1−cos (2n8))
·

q2

=0, (17)

where

d=
2
9

·
n2(n2 −1)2

(n2 +1)
·
Eh3P(a/h)

prR5 . (18)
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The parameter d represents the effect of the crack and determines the coupling between
the generalised co-ordinates q1 and q2.

If the natural frequency of modal vibration is p and the generalised co-ordinates are
represented in the form q1 = q0

1 exp(ipt) and q2 = q0
2 exp (ipt), an expression for p can be

obtained from the eigenvalues of (17). Similarly, the angular location of the vibration
modes can be obtained from the ratio of the eigenvectors. Expressing p in the form
p=v0 −Dv and considering the radial motion of the ring, we obtain the following
description of the modes:

(i) A node of one of the modes occurs at u=8. There is no change in modal strain
energy and its frequency is identical to v0, i.e.,

Dv=0. (19)

(ii) The other mode has an anti-node located at the crack, i.e., it is rotated by an angle
p/2n relative to its partner. The crack is located at the point of maximum curvature
for this mode. From (11), the change in DV in the modal strain energy is a maximum
and the frequency of the mode is reduced by the amount

Dv=
d

2v0
+O(d2). (20)

Using (7) and (18) in (20), the total split in the frequencies of the degenerate modes,
expressed as a fraction of the initial frequency, is to a first approximation

=Dv=
v0

=
4
3p

h
R

P(a/h). (21)

Thus, the fractional split in frequency is independent of the mode number.
Finally, using the approximation (14) when a�h, we obtain

=Dv=
v0

1 1·9
h
R 0ah1

2

. (22)

This shows that the frequency split is approximately proportional to the square of the
crack length.

In principle, equations (21) and (22) show that it is possible to detect the growth of radial
cracks in a ring or a cylinder by measuring the split in frequency of the degenerate modes.
In practice, however, the ring may not be perfectly symmetrical prior to the introduction
of the crack. The effect of this is now investigated.

3. MODE PAIR FREQUENCY SPLITTING PRODUCED BY CRACKS IN A
NON-SYMMETRICAL RING

The effect of asymmetry can be simulated [8, 9] by adding a small mass DM at the
angular location u= a [Figure 1(b)]. Such additional mass may occur for a number of
reasons. For instance, manufacturing imperfections could produce an equivalent effect. In
vibration testing, the attachment of a load cell and vibrator will have the same effect as
an additional mass. Similarly, deliberately machining slots of finite width to simulate
cracks in an experiment will produce a local reduction in mass. If the total mass of the
ring is M, the ratio o=DM/M can be used to characterise this asymmetry. The resulting
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equations of motion are similar to those shown in (17), except that the folloiwng
mass-related matrix [8, 9] appears in front of the acceleration terms:

1+ e+ e
n2 −1
n2 +1

cos 2na e
n2 −1
n2 +1

sin 2na

G
G

G

G

G

K

k

G
G

G

G

G

L

l
e
n2 −1
n2 +1

sin 2na 1+ e− e
n2 −1
n2 +1

cos 2na
. (23)

After some tedious manipulation the eigensolution yields the following results to a first
order in e.

When there is no crack, the frequency split for a mode pair is produced by the additional
mass only, and is given by

=Dv=
v0

=
n2 −1
n2 +1

e= sM . (24)

This split is a function of mode number. When there is no additional mass, the frequency
split is produced by the crack only and

=Dv=
v0

=
d

2v2
0
= sC . (25)

To characterise the combined effect of additional mass and crack we introduce the
following parameter

l=
sC

sM
. (26)

After some algebraic manipulation it is found that frequency split due to the combined
action of additional mass and crack is

=Dv=
v0

= sM [l2 +2l cos (2n(8− a))+1]1/2. (27)

When the additional mass and the crack are at the same location, a=8 and (27) gives

=Dv=
v0

= sC + sM . (28)

As before, the nodes in the mode pair are shifted relative to each other by an angle p/2n,
but the orientation of the pair with respect to the position u=0 is determined by the value
of l. For instance, assuming that the mass is set arbitrarily at the position a=0, the
orientation of a node of one mode of the pair is at the angle c, given by

tan (nc)=−
l cos (2n8)+1−zl2 +2l cos (2n8)+1

l sin (2n8)+1
. (29)

Inspection of (27) and (29) shows that for the limit l:0, c:0 and =Dv=/v0:sM . When
l:a, we have the limits: c:8 and =Dv=/v0:sC , as required on physical grounds. Thus,
initially when l=0, the alignment of the mode pair is set up to be orientated with the
additional mass. As the crack grows and the ratio l increases, the modal alignment rotates
in an attempt to become aligned with the crack. The frequency split is then dominated
by the effect of the crack. Some numerical evaluations using (27) and (29) are shown
in Figure 2. It can be seen that the change from mass-dominated behaviour to
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Figure 2. (a) Effect of the parameter l (see text) on the mode pair orientation. When c=8 the mode pair
is aligned with the crack. (b) Effect of l on the fractional split in the mode pair frequency.

crack-dominated behaviour becomes significant when l is of the order unity, i.e., when
sC 1 sM .

4. DISCUSSION

Equations (21) and (22) show that the growth of a radial crack in a ring can be detected
by observing the split in frequency of the degenerate modes. As an example, take h/R1 0·1
and a/h1 0·2, giving =Dv=1 8×10−3v0. Since v0 is likely to be of the order of 1 kHz or
higher for a range of materials with ne 2, it is possible in principle to detect the growth
of cracks in a symmetrical ring by measuring the split in frequency of the degenerate modes
with a precision q1 Hz.

A split in frequency is produced by the crack causing a break in the symmetry of the
structure. No real structure is perfectly symmetrical and the effect of a small amount of
initial asymmetry is indicated in equation (27) and illustrated in Figure 2. It is clear that
sC has to be larger than sM to detect crack growth. If it is smaller, crack growth could
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produce an ambiguous effect. On the other hand, if sC is comparable with sM the
phenomenon of mode pair rotation indicated in (29) and illustrated in Figure 2(a) might
also be used to detect growth of a crack.

For practical reasons, machined slots, rather than fatigue cracks, are often used to
investigate the effect of defects in experiments. Equation (27) can be used to estimate the
difference between slots and cracks. Since no material is removed in growth of a fatigue
crack, the frequency split is given by the sC parameter alone (ignoring the effect of any
crack closure, e.g., Gudmudson [16] and Gounaris et al. [17]). In contrast when a slot is
machined, a mass per unit length equal to rab is removed, where b is the width of the cut.
From (22), (24) and (27), the split in frequency of a mode pair produced by a slot is

=Dv=
v0

1 sC $1−
1
4p

n2 −1
n2 +1

b
a% . (30)

The slot only behaves like a crack when the second term inside the brackets in (30) becomes
small compared with unity. For instance, with n=2, we require that the aspect ratio of
the slot a/b to be significantly greater than 0·05 in order to be able to ignore the loss of
mass. This result shows that careful consideration must be given to aspect ration of such
slots in experiments designed to validate prediction techniques.

Experimental work [7] has shown that commercially produced cylinders are sufficiently
symmetrical to allow detection of machined slots by measurement of the frequency split
of mode pairs with n in the range 2 to 4. The experimental technique used to measure
frequency splits has been described in detail by Wake et al. The frequency response
function (FRF) was obtained using a shaker and an accelerometer located at appropriate
points on the surface of the tube. When a slot is introduced the FRF takes the form shown
in Figure 3, allowing the frequency split to be measured.

It is important to note that the effect of slots on natural frequency can be quite different
to that of fatigue cracks. Suppose a fatigue crack is formed in a tube by sustained pressure
cycling between zero and a maximum internal pressure. If the tube is subsequently vibrated
under zero pressure it is quite likely that the fatigue crack will remain closed during part
or all of the vibration cycle, with a greatly reduced effect on natural frequency. Fatigue
cracks in metals can remain closed even under applied tensile stress because of the residual

Figure 3. Effect of mode pair frequency splitting on the frequency response function.
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compressive stress that develops during fatigue crack growth [18]. Thus, Gudmudson [16]
showed that the vibration frequencies of a beam were much less affected by fatigue cracks
than by slots of the same length. Gounaris et al. [17] also demonstrated that closed fatigue
cracks did not have much influence on the natural frequencies of beams. In contrast to
an unloaded body, a fatigue crack will be fully opened under a load equal to the maximum
load in the fatigue cycle [19]. Thus in monitoring fatigue crack growth in gas cylinders by
modal analysis, it would be advisable to perform the analysis with the cylinder filled to
a significant fraction of the maximum working pressure. Finite element modelling [20] has
shown that the crack sensitivity of modal frequencies is not much affected by internal
pressure, although, of course, the frequencies of an un-cracked cylinder are increased by
internal pressure.

The results on mode rotation [Figure 2(a)] suggest that, in principle, the onset of crack
growth might be detected by this phenomenon, although it would probably be difficult to
deduce crack length in terms of angle of orientation because of the non-linear nature of
the relations. Mode orientation in a real ring with an initially high degree of symmetry
should be sensitive to the introduction of a crack, provided that the crack was not
introduced at an anti-node. By measuring acceleration at a number of points around the
circumference of the ring the mode shape and thus the orientation can be determined.
Mode rotations in cylinders following the introduction of a slot have been observed in this
way in experimental work [20].

The present simplified model is limited because it is two-dimensional. Practical cases of
interest, involving, say, crack growth in cylinders under the action of membrane stresses
are three-dimensional [7]. However, it is believed, that a procedure similar to that used
here, involving energy comparisons, could be extended to three-dimensional problems, as
is being currently investigated by the authors.
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